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The classical Chapman–Enskog expansions for the pressure deviator P and heat

flux q provide a natural bridge between the kinetic description of gas dynamics

as given by the Boltzmann equation and continuum mechanics as given by the

balance laws of mass, momentum, energy supplemented by the expansions for P
and q. Truncation of these expansions beyond first (Navier–Stokes) order yields

instability of the rest state and is inconsistent with thermodynamics. In this

paper we propose a visco-elastic relaxation approximation that eliminates the

instability paradox. This system is weakly parabolic, has a linearly hyperbolic

convection part, and is endowed with a generalized entropy inequality. It agrees

with the solution of the Boltzmann equation up to the Burnett order via the

Chapman– Enskog expansion.

KEY WORDS: Boltzmann equation; Chapman–Enskog expansion; Burnett

equations; relaxation; entropy.

0. INTRODUCTION

The classical Chapman–Enskog procedure for the Boltzmann equation (5) is

a well known tool for bridging the gap between kinetic theory as described

by the Boltzmann equation for the evolution of a monatomic gas and



continuum mechanics. The Chapman–Enskog expansion is a formal power

series ordered by the viscosity m which is itself proportional to the non-

dimensional Knudsen number, i.e.,

T=−pI−P

p=Rrh

P=mP (1)+m2P (2)+m3P (3)+· · ·

q=mX (1)+m2X (2)+m3X (3)+· · · (0.1)

The coefficients P (j), X (j), j=1, 2, ... are obtained from the Boltzmann

equation and have been determined up to j=2 (Burnett order) (8, 23) and in

one space dimension up to j=3 (super-Burnett order). (10) (We remind the

readers that all physical quantities in this paper and their mathematical

definitions are given in the Nomenclature.)

In practice however the Chapman–Enskog expansion as a tool for

solving the Boltzmann equation has had limited practical value. Truncation

at first order yields the Navier–Stokes equations which as m ceases to be

small becomes a poor approximation to solutions of the Boltzmann

equation. (15, 19) Truncation at order m2 yields the Burnett equations which

possesses the unphysical property of yielding linearly unstable rest

states. (1, 3, 16–18) Simply by expanding to the higher order will not remove this

instability. (20) In addition, the Chapman–Enskog expansion destroys the

material frame indifference at the Burnett order. (2)

Despite the linear instability of the Burnett equations, numerical solu-

tions on augmented Burnett equations (1, 9, 23) suggest that they provide more

accurate solutions in the shock layer than those of the Navier–Stokes

equations when compared with the direct simulation Monte-Carlo method

of the Boltzmann equation. In ref. 1, 9, 23 the augmented Burnett equa-

tions were obtained either by removing the unstable term from or by

adding linearly stabilizing terms of the super Burnett order to the stress and

heat flux. Unfortunately the augmented Burnett equations possess two

drawbacks: (i) Numerically they require resolution of the super-Burnett

stabilizing terms which practically means numerical resolution of derivates

up to fourth order. This is rather a cumbersome approach in several space

dimensions; (ii) the augmented Burnett equations have not been shown to

have a globally defined ‘‘entropy’’ possessing the usual property of satisfy-

ing an ‘‘entropy’’ inequality.

In this paper we propose a visco-elastic regularization that (i) requires

at most resolution of second derivatives in spatial variables; (ii) possesses a

1010 Jin and Slemrod



globally defined ‘‘entropy’’ like function; (iii) still has the property that our

system when expanded via the Chapman–Enskog expansion still matches

the classical Chapman-Enskog expansion for the Boltzmann equation to

the Burnett order. Specifically we relax the pressure deviator and heat flux

by rate equations to obtain a system of local equations that can recover the

Burnett equations via the Chapman–Enskog expansion with a correction at

the super-Burnett order. By doing this, we obtain a system of thirteen local

equations that is linearly stable. This system is weakly parabolic with a

linearly hyperbolic convection part. Moreover, it is endowed with a

generalized entropy inequality. The nonlinear entropy inequality guaran-

tees the irreversibility of the relaxation process. The localness of this system

is attractive for a robust numerical approximation to the gas dynamics

valid to the Burnett order.

Relaxation as a stabilizing mechanism is well known in materials of

rate type where the stress and heat flux satisfy separate evolution equa-

tions. (see for example ref. 13). In fact it is precisely asymptotic expansions

such as the Chapman–Enskog expansion that formally elicits this feature. (6)

In recent years, relaxation approximations have been used as an effective

tool to design numerical methods—known as the relaxation schemes. In

ref. 12 a generic way to relax a general system of hyperbolic conservation

laws was introduced by Jin and Xin, which induced a class of relaxation

schemes free of Riemann solver and local characteristic decomposition for

inviscid gas dynamics. A physically natural pressure relaxation method was

developed by Coquel and Perthame for an inviscid general gas. (7)

Our method differs from the classical approaches of Grad, (11)

Levermore (14, 15) and the extended thermodynamics. (19) For example, as noted

above, our thirteen equations asymptotically match the Chapman–Enskog

expansion to the Burnett order, while in comparison the extended Grad

moment closures need twenty-six moments to fulfill the same task. (22)

With regard to the issue of material frame indifference we point out

that the lost material frame indifference in the Chapman–Enskog expan-

sion cannot be recovered via relaxation, nor can it be by, for example,

Grad’s theory. However, we do not view this as a serious defect in our

theory, since our goal is to develop a mathematical algorithm to approxi-

mate the Boltzmann equation.

Many questions remain to be answered along this line of research. For

example, both analytical (in 1-D) and numerical study of the structure of

the shock profile, and its comparison with the Navier–Stokes profile and

that of the Direct Simulation Monte-Carlo solution, are necessary to justify

the value of this work. Another subtle issue is the boundary condition for

the relaxation system. These questions are currently under investigation by

the authors.
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The paper is divided into five sections after this Introduction. Section 1

reviews the balance laws of mass, momentum, energy, and the entropy

production—the Clausius–Duhem inequality for continuum fluid dyna-

mics. Section 2 presents the Chapman–Enskog expansion for pressure

deviator P and heat flux q up to n=2, the Burnett order. In Section 3 we

introduce and study the relaxation approximation. In Section 4 we prove a

generalized entropy inequality for the relaxation system, while Section 5 is

contributed to the study of hyperbolicity of the linearized relaxation

system.

1. THE FIELD EQUATIONS OF BALANCE

The field equations of balance for continuum fluid dynamics in the

absence of heat sources are as follows:

ṙ+r div u=0, (mass conservation) (1.1)

ru̇+grad p+div P=rb, (linear momentum conservation) (1.2)

P=PT, (rotational momentum conservation) (1.3)

rė+p div u+P ·S+div q=0, (energy conservation) (1.4)

where

e=k−h
“k

“h
, g=−

“k

“h
, p=r2

“k

“r
(1.5)

Differentiation of the expression for the Helmholtz free energy k=e−hg
yields

rhġ=rė−rṙ
“k

“r
(1.6)

which when combined with (1.1), (1.4), (1.6) yields the entropy production

equation

rhġ=−P ·S−div q (1.7)

Division by h yields the total entropy product rate of a fluid occupying

domain B … R3:

d
dt

F
B
rg dV=−F

B

P ·S
h
+
q ·grad h
h2

dV−F
“B

q ·n
h
dA (1.8)

1012 Jin and Slemrod



The Clausius–Duhem inequality is a common albeit not universally

accepted form of the second law of thermodynamics. It asserts

d
dt

F
B
rg dV+F

“B

q ·n
h
dA \ 0 (1.9)

which in turn from (1.8) requires P, q to satisfy

F
B

P ·S
h
+
q ·grad h
h2

dV [ 0 (1.10)

for all fluid domains B. However the classical Clausius–Duhem inequality

is inconsistent with P, q delivered by the Chapman–Enskog expansion

beyond Navier–Stokes order.

2. THE CHAPMAN–ENSKOG EXPANSION

The Chapman–Enskog expansion for a monatomic gas of spherical

molecules yields the constitutive relations

e=3
2 Rh, p=Rrh, m=m(h)

k=Rh log r−3
2 Rh log+

3
2 Rh−ah+b

g=−R log r+32 R log h+a

(2.1)

where a, b are constants of integration.
In addition the expansion provides representations for the pressure

deviator tensor P and heat flux vector q in terms of a series which may be

ordered via powers of the viscosity m in terms of the total number of space

plus time derivatives. Following the notation of Ferziger and Kaper (8) we

record

P=mP (1)+m2P (2)+· · · (2.2)

q=mq (1)+m2q (2)+· · · (2.3)

where the expressions for P (1), P (2), q (1), q (2) are as follows:

P (1)=−2S (2.4)

q (1)=−32MR grad h (2.5)
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P (2)=w1
1
p
(div u) S

+w2
1
p 3Ṡ−LS−SLT+

2
3
tr(SLT) I4

+w3
1
rh 3grad

2 h−
1
3
DhI4

+w4
1
rph 3

1
2
grad pë grad h

+
1
2
grad hëgrad p−

1
3
grad p ·grad hI4

+w5
1
rh2 3grad hëgrad h−

1
3
|grad h|2 I4

+w6
1
p 3S

2−
1
3
tr(S2) I4 (2.6)

q (2)=h1
1
rh
(div u) grad h

+h2
1
rh
((grad h) •−LT grad h)

+h3
1
pr
(S grad p)

+h4
1
r
div S+h5

1
rh

S grad h (2.7)

One drawback of the Chapman–Enskog expansion is that, if truncated

at the Burnett or higher order, it destroys the property of material frame

indifference. In particular, in (2.6) and (2.7), the w2 term in P (2) and the h2
term in q (2) are both material frame different. It cannot be recovered by

replacing the material derivative with the space derivative using the Euler

or Navier–Stokes equations. (2)

The coefficients w1, ..., w6, h1, ..., h5 are functions of h and are not

independent. For a gas of spherical molecules the following universal rela-

tions have been derived by Truesdell and Muncaster (23) generalizing more

specialized relations:
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w3=h4

h1=
2
3 1
7
2
−
mŒ(h)
m(h)

h2 h2−
1
3
h
“h2

“h

w1=
2
3 1
7
2
−
mŒ(h)
m(h)

h2 w2−
1
3
h
“w2

“h
(2.8)

Furthermore for gases of ideal spheres in which the collisions are

purely elastic or satisfy an inverse kth-power attraction between molecules,

the coefficients w1, w2, ..., h5 are independent of h. In addition the relations

h1

h2
=
w1

w2
=3
2
3 1
3k−5
k−1 2 for inverse kth power molecules

2 for ideal spheres

(2.9)

hold.

Exact determination of w1, w2, ..., h5 has only been accomplished for a

gas of Maxwellian (k=5) molecules. For the more general case only

approximations to w1, w2, ..., h5 have been obtained. The classical approxi-

mation result (say as found in Ferziger and Kaper [8, p. 149]) is

w2 4 2, w3 4 3, w4 4 0, w5 4
mŒ(h) hw3
m(h)

, w6 4 8

h2 4
45
8
, h3 4−3, h4 4 3, h5 4 3 1

35
4
+
h

m
mŒ(h)2

M 4
5
2

(2.10)

For Maxwell molecules the relations 2.10 are exact:
h1
h2
=w1
w2
=53 ,

hmŒ(h)
m(h)=1, and

m is linear in h.

In this paper we shall assume that in addition to (2.8) the following

relations hold

h3+w3+w4=0

w5=
mŒ(h) h
m(h)

w3

h5=h̄5+
mŒ(h) h
m(h)

w3
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w3 > 0, h2 > 0

h̄5 > 0, h̄5 a constant (2.11)

Notice the assumption (2.11) holds for the approximation (2.10) but does

not assume the molecules are ideal spheres or satisfy an inverse kth power

attraction law. Of course (2.8), (2.11) are satisfied by Maxwell molecules.

However we reiterate the fact that relation (2.8) and the first equation in

(2.11) are universal for all spherical molecules. (25)

3. A RELAXATION APPROXIMATION

Since it is the material derivative terms on the right hand side of (2.6)

and (2.7) that introduce the linear instability, (21) we seek a relaxation

approximation that regularizes P and q. Specifically, we write

ṙ+r div u=0 (3.1)

ru̇+grad p+div P=rb (3.2)

P=PT (3.3)

Ṗ−LP−PLT+
2
3
tr(PLT) I=−

2p
w2m
(P−Peq) (3.4)

r ė+p div u+P ·S+div q=0 (3.5)

q̇−LTq=−
3Mp
2h2m

(q−qeq) (3.6)

where

Peq=−2mS+P2+P3 (3.7)

P2=−m
w1

2p
(div u) P+

w2mŒ(h) ḣ
2p

P

+m2
w3

rh 3−grad 1
q

3
2 mMR2

+
1
3
div 1

q
3
2

mMR2 I4
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+m
w4

rph 3−
1
2
grad pë1

q
3
2MR2

−
1
2 1

q
3
2MR2

× grad p

+
1
3
grad p ·1

q
3
2MR2

I4

−m
w5

rh2 3
1
2
grad hë1

q
3
2MR2

+
1
2 1

q
3
2MR2

ëgrad h

−
1
3
grad h ·1

q
3
2MR2

I4−m
w6

2p 3
1
2
(SP+PS)−

1
3
tr(PS) I4 (3.8)

P3=m2 5
ŵ2

p2
tr S2+ŵ3

|grad h|2

Rr2h3 6 P+m
ĉ1

ph 1ḣ+
2
3
h div u2 P

+ŵ4 5
m3

MRr2 1
1
2mh
P ij2, k6, k (3.9)

qeq=−
3
2
mMR grad h+q2+q3 (3.10)

q2=−2m
h1

3MRrh
(div u) q+

2h2 ḣmŒ(h)
3MRrh

q

−m
h3

2pr
P grad p−m2

h4

2r
div 1

P
m2−m

h5

2rh
P grad h (3.11)

q3=m2 5
ĥ2

p2
tr S2+ĥ3

|grad h|2

Rr2h3 6 q+m
l̂1

rh2 1ḣ+
2
3
h div u2 1

q
3
2MR2

+ĥ4 5
m3h

r2 1
2

3MRmh2
qi2, k6, k (3.12)

In (3.10) and (3.12) conventional summation notation is used. Since the

energy equation (3.5) implies that

ḣ+
2
3
h div u=

2
3rR

(−P ·S−div q) (3.13)

system (3.1)–(3.6) is weakly parabolic and local (does not contain ḣ on

the right hand side) after using (3.13). Moreover, (3.13) suggests that
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ḣ+23 h div u=O(m), and P3 and q3 are O(m3), thus belong to the super

Burnett order. It is a trivial observation that (3.1)–(3.6) yield a representa-

tion of P, q in powers of m, which agrees with the classical Chapman–

Enskog expansion (2.2)–(2.7) to Burnett order, i.e., terms of order m2. Yet

unlike the augmented Burnett systems of refs. 1, 9, 23 the system possesses

spatial derivatives only up to second order.

4. A GENERALIZED ENTROPY INEQUALITY

We shall prove a generalized entropy inequality (Theorem 4.2) for the

relaxation systems (3.1)–(3.7). This inequality guarantees the irreversibility

of the relaxation process. In addition to the classical entropy for the

Navier–Stokes equations, the generalized entropy also depends on the

nonequilibrium variables P and q.

Lemma 4.1. Let P, q be given by (3.1)–(3.12) with

l̂1=−
1
2
h
“h2

“h
−h2h

mŒ(h)
m(h)
+
3
2
h2

ĉ1=−
1
2
h
“w2

“h
−w2h

mŒ(h)
m(h)
+w2

(4.1)

in (3.9), (3.12) respectively. Then the following equality holds:

r 3−g+
1
2
tr 1
w2P

2

4rph2+
1
3MR 1

2h2 |q|2

3MRr2h324
•

+div 3
q
h
+
w3Pq
3MRrh24

−ŵ4
“

“xk 5
m3

MRr2
1
2mh
P ij 1

1
2mh
P ij2, k6

−ĥ4
“

“xk 5
m3

r2 1
2

3MRmh2 qi 1
2

3MRmh
qi2, k6

=−
1
2
tr P2

mh
−
2
3MR

|q|2

mh2
+
2w2−w6
4ph

tr(Sp2)

+
2
3MR 1

2h2
3MRrh32 tr(Sqëq)
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+
1
3MR

(−h5−w3+w
−

3(h) h) tr(P grad hëq)

+3ŵ2
tr S2

p2
+ŵ3

|grad h|2

Rr2h3 4
m

Rh
tr P2

+3ĥ2
tr S2

p2
+ĥ3

|grad h|2

Rr2h3 4 m
|q|2

h2 1
2
3MR2

−ŵ4
m3

MRr2 1
1
2mh
P ij2, k 1

1
2mh
P ij2, k

−ĥ4
m3h

r2 1
2qi

3MRmh2 2, k 1
2qi

3MRmh22, k (4.2)

Proof. From (1.7),

rhġ=−tr(PS)−div q

This gives

−rġ=tr
PS
h
+div 1

q
h2+

q ·grad h
h2

(4.3)

One must also compute trPSh+
q ·grad h
h
2 . To do this, note from (3.7), (3.10) that

−2mS=Peq−P2−P3

−32 mMR grad h=qeq−q2−q3

Using (3.1), (3.2), one obtains

−2mS=
w2m

2p
(Ṗ−LP−PLT+

2
3
tr(PLT) I)+P−P2−P3 (4.4)

−
3
2
mMR grad h=

2h2m
3MRrh

(q̇−LTq)+q−q2−q3 (4.5)

Regularization of the Burnett Equations via Relaxation 1019



Now substitute relations (4.4), (4.5) into (4.3) to obtain

−rġ−div 1
q
h2

=−
1
2mh

tr 3P 5
w2m

2p 1Ṗ−LP−PLT+
2
3
tr(PLT) I2+P−P2−P364

−
q

3
2MRmh

2 ·5
2h2m
3MRrh

(q̇−LTq)+q−q2−q36 (4.6)

Next, note that

(i) tr P=0;

(ii) tr(P(LP+PLT))=2 tr(SP2)+
2
3
(div u) tr P2;

(iii)
1
2
r 1

tr P2w2
4rph 2

•

=
tr(PP •) w2
4ph

+
tr P2

4ph 5ḣ 1
w −2(h)
2
−
w2(h)
h 2+w2 div u6 ;

(iv) r 1
|q|2 h2
3MRr2h32

•

=
2q̇ ·qh2
3MRrh3

+1
2 |q|2

3MRrh32 5ḣ 1
h −2(h)
2
−
3h2
2h 2+h2 div u6 ;

(v) q ·LTq=tr(Sqë q)+
1
3
(div u) |q|2.

In (iii) and (iv) we used ṙ+r div u=0. Hence (4.6) may be rewritten as

r 3−g+
1
2
tr 1

P2w2
4rph2+

1
3MR 1

2 |q|2 h2
3MRr2h324

•

=div 1
q
h2+

tr P2

4ph 5ḣ 1
w −2(h)
2
−
w2(h)
h 2+

5
3
w2 div u6

+
2
3MR 1

2 |q|2

3MRrh32 5ḣ 1
h −2(h)
2
−
3h2
2h 2+

4
3
h2 div u6

+
2w2
4ph

tr(SP2)+
2
3MR 1

2h2
3Mrh32 tr(Sqëq)−

tr P2

2mh
−
2 |q|2

3MRmh2

+
1
2mh

tr[P(P2+P3)]+
2

3MRmh2
q(q2+q3) (4.7)
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Next we substitute relation (3.8), (3.11) for P2, q2 into (4.7). This yields

r 3−g+
1
2
tr 1

P2w2
4rph2+

1
3MR 1

2 |q|2 h2
3MRr2h224

•

=div 1
q
h2+

tr P2

4ph 5ḣ 1
w −2(h)
2
−
w2(h)
h
+
mŒ(h)
m(h)

w22+div u 1
5
3
w2−w126

+
2
3MR 1

2 |q|2

3MRrh32 5ḣ 1
h −2(h)
2
−
3h2
2h
+
mŒ(h)
m(h)

h22+div u 1
4
3
h2−h126

+
2w2
4ph

tr(SP2)+
2
3MR

2h2
3Mrh32 tr(Sqëq)−

tr P2

2mh
−
2 |q|2

3MRmh2

+
1
2mh

tr[P(P̃2+P3)]+
2

3MRmh2
q · (q̃2+q3) (4.8)

where

P̃2=P2+m
w1 div u
2p

P−w2
mŒ(h) ḣ
2p

P

q̃2=q2+m
2h1 div u
3MRrh

q−
2h2 ḣmŒ(h)
3MRrh

q

Notice however that

ḣ 1
w −2(h)
2
−
w2(h)
h
+
mŒ(h)
m(h)

w22+div u 1
5
3
w2−w12

=1ḣ+
2
3
h div u2 1

w −2(h)
2
−
w2(h)
h
+
mŒ(h)
m(h)

w22

+h div u 5−
2
3 1
w −2(h)
2
−
w2(h)
h
+
mŒ(h)
m(h)

w22+
5
3
w2

h
−
w1

h 6

=1ḣ+
2
3
h div u2 1

w −2(h)
2
−
w2(h)
h
+
mŒ(h)
m(h)

w22

+h div u 5
7
3
w2(h)
h
−
w −2(h)
3
−
2
3
mŒ(h)
m(h)

w2−
w1

h 6

=1ḣ+
2
3
h div u2 1

w −2(h)
2
−
w2(h)
h
+
mŒ(h)
m(h)

w22
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where (2.8) has been used. Similarly,

ḣ 1
h −2(h)
2
−
3h2
2
+
mŒ(h)
m(h)

h22+div u 1
4
3
h2−h12

=1ḣ+
2
3
h div u2 1

h −2(h)
2
−
3h2
2h
+
mŒ(h)
m(h)

h22

+h div u 5−
2
3 1
h −2(h)
2
−
3h2
2h
+
mŒ(h)
m(h)

h22+
4
3
h2

h
−
h1

h 6

=1ḣ+
2
3
h div u2 1

h −2(h)
2
−
3h2
2h
+
mŒ(h)
m(h)

h22

+h div u 5
7h2
3h
−
1
3
h −2(h)−

2
3
mŒ(h)
m(h)

h2−
h1

h 6

=1ḣ+
2
3
h div u2 1

h −2(h)
2
−
3h2
2h
+
mŒ(h)
m(h)

h22

where again (2.8) was used. Hence, (4.8) simplifies to

r 3−g+
1
2
tr 1

P2w2
4rph2+

1
3MR 1

2 |q|2 h2
3MRr2h324

•

=div 1
q
h2+

tr P2

4ph 1ḣ+
2
3
h div u2 1

w −2(h)
2
−
w2(h)
h
+
mŒ(h)
m(h)

w22

+
2
3MR 1

2 |q|2

3MRrh32 1ḣ+
2
3
h div u2 1

h −2(h)
2
−
3h2
2h
+
mŒ(h)
m(h)

h22

+
2w2
4ph

tr(SP2)+
2
3MR 1

2h2
3MRrh32 tr(Sqëq)

−
tr P2

2mh
−
2 |q|2

3MRmh2
+
1
2mh

tr[P(P̃2+P3)]+
2

3MRmh2
q · (q̃2+q3)

(4.9)
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Next note the following identity:

1
3MR

div 1
w3Pq
rh2 2=−

w3

r2h3
tr(P grad(rh)ëq)

+
w3 div(Pq)
3MRrh2

+
w −3(h)−

w3(h)
h

3MRrh2
tr(P grad hëq) (4.10)

Substitute the definitions of q̃2, P̃2 and the relation (4.10) into the expres-

sion on the left hand side of the following equations, one gets

tr(PP̃2)
2mh

+
2

3MRmh2
q · q̃2+

1
3MR

div
w3Pq
rh2

=
−1

3MRr2h3
tr(P grad(rh)ëq)(w3+w4+h3)−

div(Pq)
3MRrh2

(−w3+h4)

+
1

3MRrh3
tr(P grad hëq) 1w

−

3(h) h−w5−h5+
mŒ(h) h
m(h)

(w3+h4)−w32

−
w6

4hp
tr(P2S) (4.11)

But if we use identities (2.8), (2.11) to see that

w3+w4+h3=0, w3=h4

w −3(h) h−w3−w5−h5+
mŒ(h) h
m(h)

(w3+h4)=−h5−w3+w
−

3(h) h

then (4.11) simplifies to

tr(PP̃2)
2mh

+
2

3MRmh2
q · q̃2+

1
3MR

div 1
w3Pq
rh2 2

=
1

3MRrh3
tr(P grad hëq)(w −3(h) h−w3−h5)−

w6

4hp
tr(P2S) (4.12)

Finally, substitute the relations for

1
2mh

tr[P(P̃2+P3)]+
2

3MRmh2
q · (q̃2+q3)

obtained from (4.12) and the definitions of P3, q3 given by (3.9), (3.12),

(4.1) into (4.9) to obtain the desired identity (4.2). This completes the proof
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of the Lemma.

We now majorize the indeterminate terms on the right side of (4.2).

First recall that for either S or P the Cayley–Hamilton Theorem implies:

−S3+I1S2−I2S+I3I=0

where

I1=−tr S, I2=
1
2 [(tr S)

2−tr S2], I3=det S

Since tr S=0 we have

−S3+(12 tr S
2) S+(det S) I=0

Hence−tr S3+3 det S=0, which implies

S3=12(tr S
2) S+1

3 (tr S
3) I

and

S4=12 (tr S
2) S2+13 (tr S

3) S

This in turn gives

tr S4=12 (tr S
2)2 (4.13)

and similarly

tr P4=12 (tr P
2)2 (4.14)

By the Cauchy–Schwartz inequality

|tr(SP2)| [ (tr S2)1/2(tr P4)1/2

and from (4.14),

|tr(SP2)| [
1

`2
((tr S2)(tr P2))1/2(tr P2)1/2 (4.15)
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Next, note

|tr(Sqëq)|=|Sq ·q| [ |Sq| |q| [ ((tr S2)1/2 |q|) |q| (4.16)

|tr(P grad hëq)|=|P grad h ·q| [ |P grad h| |q| [ ((tr P2)1/2 |grad h|) |q|
(4.17)

Now use (4.15), (4.16), (4.17) to majorize the right hand side of (4.2) to

obtain the following entropy inequality:

r 3−g+
1
2
tr 1
w2P

2

4rph2+
1
3MR 1

2h2 |q|2

3MRr2h324
•

+div 3
q
h
+
w3Pq
3MRrh24

−ŵ4
“

“xk 5
m3

MRr2
1
2mh
P ij 1

1
2mh
P ij2, k6

−ĥ4
“

“xk 5
m3h

r2 1
2

3MRmh2
qi21

2
3MRmh2

qi2, k6

[−
1
2
tr P2

mh
−
2
3MR

|q|2

mh2
+
|2w2−w6 |

4`2 ph
((tr S2)(tr P2))1/2 (tr P2)1/2

+
2
3MR 1

2h2
3MRrh32 ((tr S

2)1/2 |q|) |q|

+
1

3MRrh3
|−h5−w3+w

−

3(h) h| (tr P
2)1/2 |grad h| |q|

+3ŵ2
tr S2

p2
+ŵ3

|grad h|2

Rr2h3 4
m

Rh
tr P2

+3ĥ2
tr S2

p2
+ĥ3

|grad h|2

Rr2h3 4 m
|q|2

h2 1
2
3MR2 (4.18)

This proves the following theorem on the entropy inequality.

Theorem 4.2. In addition to the hypothesis of Lemma 4.1, we

assume that ŵ4 \ 0, ĥ4 \ 0. Furthermore, if we define z ¥ R5 by

z=51
tr P2

h 2
1/2

,=
2
3

|q|

`MR h
, m
(tr S2tr P2)1/2

p(Rh)1/2
, m=

2
3
(tr S2)1/2 |q|
ph(MR)1/2

,

=
2
3
|grad| h| q|
ph3/2 6
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then the following entropy inequality holds:

r 3−g+
1
2
tr 1
w2P

2

4rph2+
1
3MR 1

2h2 |q|2

3MRr2h324
•

+div 3
q
h
+
w3Pq
3MRrh24

−ŵ4
“

“xk 5
m3

MRr2
1
2mh
P ij 1

1
2mh
P ij2, k6

−ĥ4
“

“xk 5
m3

r2 1
2

3MRmh2 qi 1
2

3MRmh
qi2, k6

[−
1
m
z ·Dz (4.19)

where

D=|
1
2

0
−|w6−2w2 |

8`2
0 −

|h̄5−w3+hw
−

3(h)

`6 M

0 1 0 −
1
3M

0

−|w6−2w2 |

8`2
0 −ŵ2 0 0

0 −
1
3M

0 −ĥ2 0

−
|−h̄5−w3+hw

−

3(h)|

`6 M
0 0 0 −

ĥ3

M
}

D is positive definite if ŵ2 < 0, ĥ2 < 0, ĥ3 < 0 are sufficiently large in

absolute value, ŵ3 [ 0, and |−h̄5−w3+hw
−

3(h)|, |w6−2w3 | are bounded.

Remark 1. In Theorem 4.2 the positive definiteness of D is a suffi-

cient condition but may not be necessary. Currently we are not able to

prove the necessary condition.

Remark 2. If ŵ4=ĥ4=0, namely, the dissipative terms in P3 and q3
are not present, the entropy condition still holds and the entropy and the

entropy flux in (4.19) agree with those of Grad’s thirteen moment

theory. (19) The generalized entropy, as in Grad’s theory, is not globally
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convex. However, it is locally convex around the equilibrium solution (r

and h are constants), thus the rest state (u=0) is stable, in contrast to the

Burnett equations where the rest state is unstable.

5. HYPERBOLICITY

In this section we study the hyperbolicity of the relaxation approxi-

mation (3.1)–(3.6). Our computation will show that locally, for a one

dimensional motion, the relaxation system (3.1)–(3.6) given below is

hyperbolic when the parabolic like contributions given via ŵ4 and ĥ4 are

omitted (i.e. ŵ4=ĥ4=0). Inclusion of these terms makes our system weakly

parabolic. In order to reduce the system to the one dimensional case, we

assume that all quantities depend on x only,

u=(u(x, t), 0, 0)

and look for special solution

P23=P13=P12=q2=q3=0

it is easy to show that these are exact solutions to (3.4) and (3.6).

Furthermore, one can show that

P22=P33

is also consistent with (3.4) and (3.6). Since P has zero trace, this implies

that

P22=−12 P
11

Thus we are left with five independent variables r, u, h, P11=s and q1=q,
satisfying the system

rt+urx+rux=0 (5.1)

ut+uux+
1
r
px+
1
r
sx=b (5.2)

ht+uhx+
2p
3rR

ux+
2
3rR

sux+
2
3rR

qx=0 (5.3)

st+usx−
4
3
sux=−

2p
w2m
(s−seq) (5.4)

qt+uqx−qux=−
3Mp
2h2m

(q−qeq) (5.5)

Regularization of the Burnett Equations via Relaxation 1027



where

seq=−
4
3
mux+s2+s3 (5.6)

s2=−m
w1

2p
sux+

w2mŒ(h) ḣ
2p

s−m2
4w3
9rh 1

q
mMR2x

−m
4w4
9rph

q
MR

px−m
4w5
9rh2

q
MR

hx−m
w6

6p
sux (5.7)

s3=m2 5
2ŵ2
3p2
ux
2+ŵ3

hx
2

Rr2h3 6 s−m
ĉ1

ph
2
3rR

(s2ux+sqx)

−ŵ4 5
m3

MRr2 1
s

2mh2x6x (5.8)

qeq=−
3
2
mMRhx+q2+q3 (5.9)

q2=−2m
h1

3MRrh
qux+

2h2 ḣmŒ(h)
3MRrh

q

−m
h3

2pr
spx−m2

h4

2r 1
s

m2x−m
h5

2rh
shx (5.10)

q3=m2 5
2ĥ2
3p2
ux
2+ĥ3

hx
2

Rr2h36 q−m
l̂1

rh2
2
3rR

(sux+qx) 1
q

3
2MR2

−ĥ4 5
m3h

r2 1
2

3MRmh2
q2x6x (5.11)

Set ŵ4=ĥ4=0. Upon using p=Rrh, and (5.3) to replace ḣ, one obtains the

Jacobi matrix for the relaxation system (5.1)–(5.5):

J=5
u r 0 0 0

Rh
r

u R
1
r

o

0 J32 u 0
2
3Rr

J41 J42 J43 u J46

J51 J52 J53 J54 J56
6 (5.12)
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where

J32=
2
3
h+

2
2Rr

s

J41=
8w4q
9w2rM

J42=−
4
3
s+
8p
3w2
+
w1

w2
s−2

mŒ

m
s 1−

1
3
h−

1
3rR

s2

+
w6

3w2
s+
4ĉ1
3w2p

s2

J43=−
8w3qmŒ
9w2mM

+
8(w4+w5) q
9w2hM

J46=
2mŒs
3mrR

+
8w3
9w2M

+
4ĉ1s
3w2p

J51=
3h3MRh
4h2r

s

J52=−q+
h1

h2
q−
mŒ

m
q 1−

2
3
h−

2
3rR

s2+
2l̂1q
3h2p

s

J53=
9M2pR
4h2

−
3Mph4mŒ
4h2rm

s+
3MR(h3+h5)

4h2
s

J54=
3Mph4
4h2r

J56=u+
2mŒq
3mrR

+
2l̂1q
3h2p

(5.13)

The characteristic polynomial of the Jacobian matrix (5.12) is

(u−l)4 (j56−l)+(u−l)4 5−
2
3Rr

J53−J46J546

+(u−l)2 (j56−l) 5−RJ32−
1
r
J42−Rh6

+(u−l)2 5
2
3Rr

J43J54+
2
3r
J52+

1
r
J46J526
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+(u−l)2 (j56−l) 5
1
r
J32J43+J416

+(u−l) 5−
2
3r
J42J54+RJ32J54+

2
3Rr2

J42J53−
2
3Rr2

J43J52

−
1
r
J32J46J53−J46J51+RhJ46J54−

2
3
J51+

2h
3r
J536

+5−
2h
3r
J43J54−

2
3rR

J41J53+
2
3rR

J43J51+
2
3
J41J546 (5.14)

For Maxwellian molecules m/mŒ=h, those quantities in (5.13) become

J32=
2
3
h+

2
3Rr

s

J41=0, J42=
7
3
s+
4
3
p+
2
3
s2

p
, J43=0, J46=

2
3
s

p
+
8
15

J51=−
p
r2
s, J52=

q
p
s+
4
3
q, J53=

5
2
pR+

31
4
Rs,

J54=
p
r
, J56=u+

q
p

(5.15)

while the characteristic polynomial becomes (upon changing u−lQ−l):

l[l4+a3l3+a2l2+a1l+a0] (5.16)

with the coefficients

a0=
123
10
Ps
r2
+3
p2

r2
+
587
90
s2

r2
, a1=

7
5
q
r
+
41
45
qs
pr

a2=−
26
5
p
r
−
53
6
s

r
−
2
3
s2

pr
, a3=−

q
p

(5.17)
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While it is very difficult to see whether the characteristic polynomial (5.16)

has five real roots, we instead investigate the linearized system (5.1)–(5.5)

around

( r̄, 0, h̄, 0, 0)

where r̄, h̄ are constants. In this case, the characteristic polynomial (5.16)

reduces to

l 5l
4−
26
5
p̄
r̄
l2+3 1

p̄
r̄2
2

6 (5.18)

where p̄=Rh̄r̄. This polynomial has five distinct roots

0, ± =
13
5
±=

94
25=

p̄
r̄

Thus the linearized relaxation system, when the parabolic terms are

omitted, is hyperbolic. This shows that the relaxation system is at least

locally well-posed for initial value problems. By incorporating the weakly

parabolic terms we expect to get the global well-posedness but will leave

this for future research.

NOMENCLATURE

b body force

B subset of Euclidean space

div divergence

e internal energy density

grad gradient

I unit tensor

L velocity gradient (L=grad u)
M Maxwell number

n unit exterior normal

P pressure deviator (P=[P ij]3×3)p mean normal pressure
q energy flux vector (q=[q1, q2, q3]T)
R gas constant

S distortion tensor (S=12 (grad u+(grad u)T−23 div uI))
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T stress tensor (T=−pI−P)
t time

tr trace

u macroscopic velocity

x cartesian coordinate (x=(x, y, z))
m viscosity

r mass density

g specific entropy

k Helmholtz free energy, k=e−hg
h temperature

hi, ĥi coefficients of the Chapman–Enskog expansion for q
wi, ŵi coefficients of the Chapman–Enskog expansion for P
ĉ1, l̂1 coefficients of the super Burnett terms

( •) material derivative of ( ), i.e., ( •)= “

“t ( )+u ·grad( )
ë dyadic product, i.e. (uë v)ij=uivj
· inner product, i.e. u · v=uivi for vectors u, v;

A ·B=tr(AB) for tensors A, B.
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